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Abstract

The orthogonal polynomials on the unit circle are defined by the recurrence relation
Oy 1(2) = 2P (2) — oD (2), k=0, @p=1,

where oy, € D forany k > 0. If we consider n complex numbers o, o1, ..., ¢,_2 € Dando, | € D,
we can use the previous recurrence relation to define the monic polynomials ®q, @y, ..., ®,. The
polynomial ®,(z) = @y (z; 09, ..., 04,2, %, —1) obtained in this way is called the paraorthogonal
polynomial associated to the coefficients o), o1, ..., ;1.

We take o, o1, ..., %,_o i.i.d. random variables distributed uniformly in a disk of radius r < 1
and o, _; another random variable independent of the previous ones and distributed uniformly
on the unit circle. For any n we will consider the random paraorthogonal polynomial @, (z) =
D, (z5 09y - -+ %32, 0y —1). The zeros of @, are n random points on the unit circle.

We prove that for any ¢! € 9D the distribution of the zeros of @, in intervals of size 0(%) near
¢'? is the same as the distribution of n independent random points uniformly distributed on the unit
circle (i.e., Poisson). This means that, for large 7, there is no local correlation between the zeros of
the considered random paraorthogonal polynomials.
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1. Introduction

In this paper, we study the statistical distribution of the zeros of paraorthogonal polyno-
mials on the unit circle. In order to introduce and motivate these polynomials, we will first
review a few aspects of the standard theory. Complete references for both the classical and
the spectral theory of orthogonal polynomials on the unit circle are Simon [29,30].

One of the central results in this theory is Verblunsky’s theorem, which states that there
is a one—one and onto map u — {o,}, >0 from the set of nontrivial (i.e., not supported
on a finite set) probability measures on the unit circle and sequence of complex numbers
{otn}n >0 with |o,,| < 1 for any n. The correspondence is given by the recurrence relation
obeyed by orthogonal polynomials on the unit circle. Thus, if we apply the Gram—Schmidt
procedure to the sequence of polynomials 1, z,z2,... € L?(dD, du), the polynomials
obtained @y (z, du), @1 (z, dw), O2(z, dw) . .. obey the recurrence relation

D11 (2, dp) = 2O (z, dp) — Dy (z, dp), k=0, (1.1

where for @y (z, du) = ZI;':Q by, j 2/, the reversed polynomial @ is given by @ (z, dp) =

lec‘:o l_Jk,k_.,' z/. The numbers oy from (1.1) obey |ox| < 1 and, for any k, the zeros of the
polynomial @ (z, du) lie inside the unit disk.

If, for a fixed n, we take og, o1, ...,0,—2 € D and a,—; = f € 0D and we use the
recurrence relations (1.1) to define the polynomials ®g, @1, ..., ®,_1, then the zeros of the
polynomial

D, (z, du, B) = 2®p_1(z, dp) — BO}_, (2, dp) (1.2)

are simple and situated on the unit circle. These polynomials (obtained by taking the last
Verblunsky coefficient on the unit circle) are called paraorthogonal polynomials and were
analyzed in [17,20]; see also Chapter 2 in Simon [29].

For any n, we will consider random Verblunsky coefficients by taking ag, o, ..., 0y—2
to be i.i.d. random variables distributed uniformly in a disk of fixed radius r < 1 and o,
another random variable independent of the previous ones and distributed uniformly on the
unit circle. Following the procedure mentioned before, we will get a sequence of random
paraorthogonal polynomials {®, = ®,(z, du, )} >0. For any n, the zeros of @, are n
random points on the unit circle. Let us consider

n
(o — Z 5121), (1.3)
k=1

where 2", 20V 2

We will prove that the distribution of the zeros of @, on intervals of length 0(%) situated

are the zeros of the polynomial ®,,. Let us also fix a point ¢’ ¢ oD.

near ¢’ is the same as the distribution of n independent random points uniformly distributed
in the unit circle (i.e., Poisson).

A collection of random points on the unit circle is sometimes called a point process on the
unit circle. Therefore, a reformulation of this problem can be: the limit of the sequence point
process {{ () }n >0 on a fine scale (of order O (%)) near a point ¢! ¥ is a Poisson point process.
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This result is illustrated by the following generic plot of the zeros of random paraorthogonal
polynomials:
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This Mathematical plot represents the zeros of a paraorthogonal polynomial of degree
71 obtained by randomly taking o, o1, ..., g9 from the uniform distribution on the disk
centered at the origin of radius % and random o7 from the uniform distribution on the unit
circle. On a fine scale we can observe some clumps, which suggests the Poisson distribution.

Similar results appeared in the mathematical literature for the case of random Schrodinger
operators; see [25,26]. The study of the spectrum of random Schrodinger operators and of
the distribution of the eigenvalues was initiated by the very important paper of Anderson [4],
who showed that certain random lattices exhibit absence of diffusion. Rigorous mathemati-
cal proofs of the Anderson localization were given by Goldsheid—Molchanov—Pastur [16] for
one-dimensional models and by Frohlich—Spencer [13] for multidimensional Schrodinger
operators. Several other proofs, containing improvements and simplifications, were pub-
lished later. We will only mention here Aizenman—Molchanov [2] and Simon—Wolff [33],
which are relevant for our approach. In the case of the unit circle, similar localization results
were obtained by Teplyaev [35] and by Golinskii—Nevai [18].

In addition to the phenomenon of localization, one can also analyze the local struc-
ture of the spectrum. It turns out that there is no repulsion between the energy levels of
the Schrodinger operator. This was shown by Molchanov [26] for a model of the one-
dimensional Schrédinger operator studied by the Russian school. The case of the multi-
dimensional discrete Schrodinger operator was analyzed by Minami [25]. In both cases
the authors proved that the statistical distribution of the eigenvalues converges locally to
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a stationary Poisson point process. This means that there is no correlation between eigen-
values.

We will prove a similar result on the unit circle. For any probability measure du on the
unit circle, we denote by {)q. x1, X2, - - -} the basis of L?(0D, dy) obtained from {1, z, 77,
22,272, ...} by applying the Gram—Schmidt procedure. The matrix representation of the
operator f(z) — zf(z) on L%(0D, dy) with respect to the basis {yq, %1, %2, - - -} 1s a five-
diagonal matrix of the form:

% o1pg p1po O 0
po —oaop —prog O 0 .
C = 0 xpp —o20 OCEPZ p3p2 .- (1.4)
0 popy —prot —0300 —p302 ...
0 0 0 04p3 —0403 ...

(g, o1, . .. are the Verblunsky coefficients associated to the measure y, and for any n >0,
P, = /1 — |2, |?). This matrix representation is a recent discovery of Cantero et al. [6].
The matrix C is called the CMV matrix and will be used in the study of the distribution of
the zeros of the paraorthogonal polynomials.

Notice that if one of the o’s is of absolute value 1, then the Gram—Schmidt process ends
and the CMV matrix decouples. In our case, |o¢,—1| = 1, so p,_; = 0 and therefore the
CMYV matrix decouples between (n — 1) and n and the upper left corner is an (n x n) unitary
matrix C™. The advantage of considering this matrix is that the zeros of ®,, are exactly the
eigenvalues of the matrix C™ (see, e.g., [29]). We will use some techniques from the spectral
theory of the discrete Schrodinger operators to study the distribution of these eigenvalues,
especially ideas and methods developed in [2,3,8,25,26,28]. However, our model on the unit
circle has many different features compared to the discrete Schrodinger operator (perhaps
the most important one is that we have to consider unitary operators on the unit circle
instead of self-adjoint operators on the real line). Therefore, we will have to use new ideas
and techniques that work for this situation.

The final goal is the following:

Theorem 1.1. Consider the random polynomials on the unit circle given by the following
recurrence relations:

Dpy1(2) = 2P (2) — %Py (2), k=0, D=1, (1.5)

where o, o1, . . ., 0,2 are i.i.d. random variables distributed uniformly in a disk of radius
r < 1 and o, is another random variable independent of the previous ones and uniformly
distributed on the unit circle.

Consider the space Q = {0 = (0, %1, ..., 0p—2,0y—1) € DO, r) x DO, r) x -+ X
D(0, r) x 0D} with the probability measure P obtained by taking the product of the uniform
(Lebesgue) measures on each D(0, r) and on 0D. Fix a point % € 0D and let C(") be the
point process defined by (1.3).

Then, on a fine scale (of order % )near e'®, the point process { () converges to the Poisson

point process with intensity measure n g—g (where % is the normalized Lebesgue measure).
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This means that for any fixed ay < by <ay < by < --- <ay < by and any nonnegative

integers ki, ka, . .., ky, we have
27 2mb)

P(C(”) (ei<00+%1)’€i(00+ i ))

=ki,..., (™ <gi(90+2",‘l"”)’ ei(@o+%)) _ km>
k m
y o—r—ap 1= g, (b — am) 06
k! T k! :

asn — oQ.

2. Outline of the proof

From now on we will work under the hypotheses of Theorem 1.1. We will study the
statistical distribution of the eigenvalues of the random CMV matrices

cm — o 2.1)

for o € Q (with the space Q defined in Theorem 1.1).

A first step in the study of the spectrum of random CMV matrix is proving the exponential
decay of the fractional moments of the resolvent of the CMV matrix. These ideas were
developed in the case of Anderson models by Aizenman—Molchanov [2] and by Aizenman
et al. [3]. In the case of Anderson models, they provide a powerful method for proving
spectral localization, dynamical localization, and the absence of level repulsion.

Before we state the Aizenman—Molchanov bounds, we have to make a few remarks on
the boundary behavior of the matrix elements of the resolvent of the CMV matrix. For any
z € D and any 0<k, I < (n — 1), we will use the following notation:

¢
Co(tn) _z y

Fu(z, CV) = [ (2.2)
As we will see in the next section, using properties of Carathéodory functions, we will
get that for any o € €, the radial limit

Fu(e'?, e’y = lim Fu(re?, cd”) 2.3)
r

exists for Lebesgue almost every ¢'? € oD and Fr(-, Co((")) € L*(0D) for any s € (0, 1).
Since the distributions of «, o1, ..., a,—1 are rotationally invariant, we obtain that for
any fixed el e 0D, the radial limit Fy; (eie, Cén)) exists for almost every o € Q. We can
also define

o —Z

n 1
Gu(z. 6" = [ a } 24)
kl

and

Gu? ciy = 11%? Gu@re? ). 2.5)
r



34 M. Stoiciu / Journal of Approximation Theory 139 (2006) 29—-64
Using the previous notation we have
Theorem 2.1 (Aizenman—Molchanov bounds for the resolvent of the CMV matrix). For the

model considered in Theorem 1.1 and for any s € (0, 1), thgzre exist constants C1, D1 > 0
such that for anyn > 0, any k, [, 0<k, [ <n — 1 and any et e 0D, we have

([P, i)

) <Cp e Pk 2.6)

where Cc((") is the (n x n) CMV matrix obtained for o, a1, . .. 0,—> uniformly distributed in
D(0, r) and oy, uniformly distributed in 0D.

Using Theorem 2.1, we will then be able to control the structure of the eigenfunctions of
the matrix C™.

Theorem 2.2 (The localized structure of the eigenfunctions). For the model considered in
Theorem 1.1, the eigenfunctions of the random matrices C™ = Co((”) are exponentially
localized with probability 1, that is exponentially small outside sets of size proportional to
(In n). This means that there exists a constant Dy > 0 and for almost every o € Q, there
exists a constant C, > 0 such that for any unitary eigenfunction go&”, there exists a point
m(q) )) (1 <m(q)(”)) < n) with the property that for any m, |m — m(go&"))l >D; In(n+1),
we have

10 (m)| < Cy e~ @/ D2 Im = m(@)]. 2.7)

The pointm ((p(n)) will be taken to be the smallest integer where the eigenfunction go&") (m)
attains its maximum.

In order to obtain a Poisson distribution in the limit as n — 0o, we will use the approach
of Molchanov [26] and Minami [25]. The first step is to decouple the point process ™ into
the direct sum of smaller point processes. We will do the decoupling process in the following
way: for any positive integer n, let C™ be the CMV matrix obtained for the coefficients

o, o1, - .., o; with the additional restrictions on] = el D[] = em . a, =
nn nn

ei"[lﬂ"], where e/ | ¢i2 . eMnnl are independent random points uniformly distributed
on the unit circle. Note that the matrix C) decouples into the direct sum of & [In ] unitary
matrices C 1("), an) C 3(m) nnl* We should note here that the actual number of blocks C~l(n)
is slightly larger than [ln n] and that the dimension of one of the blocks (the last one) could
be smaller than [ ].

However, since we are only interested in the asymptotic behavior of the distribution of the
eigenvalues, we can, without loss of generality, work with matrices of size N = [Inn] [1 = ]

The matrix CV) is the direct sum of exactly [Inn] smaller blocks C~§N), C~£N) C[(ljr\: 31

We denote by (VP = Z["/ln"] 5 i where z(p), zgp), o z[(f/)lnn] are the eigenvalues of

the matrix C;,N). The decoupling result is formulated in the following theorem:
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Theorem 2.3 (Decoupling the point process). The point process (N can be asymptoti-
cally approximated by the direct sum of point processes ZEHZ”I] ({NP) In other words, the

distribution of the eigenvalues of the matrix CN) can be asymptotically approximated by
the distribution of the eigenvalues of the direct sum of the matrices CI(N) , CéN), ey [(111\1] ,)1].

The decoupling property is the first step in proving that the statistical distribution of
the eigenvalues of C*N) is Poisson. In the theory of point processes (see, e.g., [7]), a point
process obeying this decoupling property is called an infinitely divisible point process. In
order to show that this distribution is Poisson on a scale of order 0(%) near a point ¥ we
need to check two conditions:

[Inn]

G IP(C(N”’) (A (N, 0)) >1) — |A| as n— oo, (2.8)
p=1
[Inn]

i > P (gwl’) (A (N, 0)) >2) 50 as n— oo, (2.9)
p=1

- _ — (I O+FY LiO0+3D)
where for an interval A = [a, b] we denote by A(N, 0) = (e N e ~N’)and | - |
is the Lebesgue measure (and we extend this definition to unions of intervals). The sec-
ond condition shows that it is asymptotically impossible that any of the matrices C~§N),
ééN) 5(N)

w s Clinn has two or more eigenvalues situated an interval of size % Therefore, each

of the matrices C~'§N), (f’;N), e, N[(IIIY;] contributes with at most one eigenvalue in an interval
(N)

of size % But the matrices C~1(N), ééN), el é[lnn] are decoupled, hence independent, and
therefore we get a Poisson distribution. The condition (i) now gives Theorem 1.1.
The next four sections will contain the detailed proofs of these theorems.

3. Aizenman-Molchanov bounds for the resolvent of the CMYV matrix

We will study the random CMV matrices defined in (2.1). We will analyze the matrix
elements of the resolvent (C™ — z)~! of the CMV matrix, or, what is equivalent, the matrix
elements of

F(z,C")y= @™ +2)C™ —)" ' =1+2z(Cc™ —p)~! (3.1)

(we consider z € D). More precisely, we will be interested in the expectations of the frac-
tional moments of matrix elements of the resolvent. This method (sometimes called the
fractional moments method) is useful in the study of the eigenvalues and of the eigenfunc-
tions and was introduced by Aizenman and Molchanov in [2].

We will prove that the expected value of the fractional moment of the matrix elements
of the resolvent decays exponentially (see (2.6)). The proof of this result is rather involved;
the main steps will be

S
Step 1: The fractional moments E () Fii(z, Cé"))‘ ) are uniformly bounded (Lemma 3.1).
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N
Step 2: The fractional moments E (’Fkl (z, Cé"))‘ ) converge to 0 uniformly along the
rows (Lemma 3.6).

)
Step 3: The fractional moments E (‘ Fi(z, C&"))‘ ) decay exponentially (Theorem 2.1).

S
We will now begin the analysis of E (‘ Fii(z, Cé"))‘ )

It is not hard to see that Re [(C ™ 4 Hem — z)_l] is a positive operator. This will help
us prove

Lemma 3.1. Foranys € (0, 1),any k,l, 1<k,l<n,and any z € D U 0D, we have

N
E(|Fut.ei™|) <c. (32)
where C = Cﬁ—;
2

Proof. Let F,(z) = (o, € + @Y — 2)~1g). Since Re F, >0, the function F,, is
a Carathéodory function for any unit vector ¢. Fix p € (0, 1). Then, by a version of
Kolmogorov’s theorem (see [9] or [23]),

2
[)

where C| =

. . s do
(¢, € + pe'®y(CY” — peihy 1) 5. <Cr. (3.3)

_1_
TS .
Ccos s

The polarization identity gives (assuming that our scalar product is antilinear in the first
variable and linear in the second variable)

3
i 7 1 N sm i m
Fu(pe!. ¢ = 2 37 (=" (@c+i"00. F(pe'". GG +i"0n) (3

m=0

which, using the fact that [a + b|* <|a|® + |b|®, implies

3 . . K
. 1 (0x +1i™0p) . O +i™0p)
F e’e,C(") ' <— E (—, F( e’H,C(") —) 3.5
Using (3.3) and (3.5), we get, for any Cé"),
o 0 o, [* 0
f Fr(pe'”, Cy )‘ —<C, (3.6)
0 27

22—x
S -

where C = =—
cos 5
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Therefore, after taking expectations and using Fubini’s theorem,

2n ) s\ dO
|7 E(|muwe.cn]) 5 <c. (3.7)

0 2n
The coefﬁcie;nts o0, U1, - -y U1 define a measure du on dD. Let us consider another
measure dy(e'’) = d ,u(el(f’e)) This measure defines Verblunsky coefficients « g, o 9,
.., 0y—1.9>»a CMV matrix c" ;, and orthonormal polynomials ¢ g, @} g, - -, ¢,_1 9 Us-

ing the results presented in Slmon [29], for any k, 0<k<n — 1,

o = e EF D0, (3.8)
Pr0(2) = e 2). (3.9)

The relation (3.9) shows that for any k and 0, y; ¢(2) = Ak 0 %k (e7107) where [Ar.0l = L.
Since o, o1, ..., ay—1 are independent and the distribution of each one of them is rota-
tionally invariant, we have

E([Futpe’®, ¢ ) = E(|Futoe’®, cI]). (3.10)

But, using (3.8) and (3.9),

et + pe el i )
Fu(pe'?, (n)) /m o pei 1.0(€) 21.0(e'™) dpy(e')

e”+p i0 : L
= [ S 10 2 du
z(‘c+0) +pe’9
I

b T it 110 ) 10,00 ey

_ el +p  — ,
= )vl,eikﬁ/ —— 1(e"") (€™ dp(e'™)
op €t —p

= 1.0 2.0 Fu(p, C3™),

where M,,@Zm =1.
. S
Therefore the function 0 — E (‘Fkl (pe’H, Cé"))‘ ) is constant, so, using (3.7), we get

E([Rutoe cip]) <c. (3.11)

Since p and 0 are arbitrary, we now get the desired conclusion for any z € D.

Observe that by (3.4), Fy; is a linear combination of Carathéodory functions. By Duren
[9], any Carathéodory function is in H*(D) (0 < s < 1) and therefore it has boundary
values almost everywhere on 0D. Thus we get that, for any fixed o € Q and for Lebesgue
almost any z = ¢/ € 0D, the radial limit Fy;(e'?, CJ") exists, where

Fue?, ey = lim Fi (pe'?, c”). (3.12)
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Also, by the properties of Hardy spaces, Fi;( -, Co((")) € L*(0D) for any s € (0, 1). Since
the distributions of o, a1, ..., a,—1 are rotationally invariant, we obtain that for any fixed
el e 0D, the radial limit Fy; (eie, Cé")) exists for almost every o € Q.

The relation (3.11) gives

sup E (‘Fkl(peio, c&"))‘s) <C. (3.13)
pe(0,1)

By taking p 1 1 and using Fatou’s lemma we get

E (‘sz(em, c)

S) <C. O (3.14)

Note that the argument from Lemma 3.1 works in the same way when we replace the
unitary matrix Ca((") with the unitary operator C, (corresponding to random Verblunsky
coefficients uniformly distributed in D(0, 7)), so we also have

E (‘sz(e‘ie, Co)

S) <C (3.15)

for any nonnegative integers k, / and for any ¢l e oD.

The next step is to prove that the expectations of the fractional moments of the resolvent
of C™ tend to zero on the rows. We will start with the following lemma suggested to us by
Aizenman [1]:

Lemma 3.2. Let {X, = Xp,(®)}n>0, © € Q be a family of positive random variables
such that there exists a constant C > 0 such that E(X,) < C and, for almost any w» € Q,
lim,— o X, (w) = 0. Then, for any s € (0, 1),

lim E(X})=0. (3.16)

n—oo
Proof. Let ¢ > 0 and let M > 0 such that M*~! < ¢. Observe that if X,,(w) > M, then
X3 (w) < M*~! X, (w). Therefore

X5 (0) < X5 (o) L X () < M} (@) + M1 X, (w). (3.17)
Clearly, E(M* D, 7)< eC and, using dominated convergence,

E(X; Lo Xn@y<my) — 0 as n— oo. (3.18)

We immediately get that for any ¢ > 0 we have

lim sup E(X;) <E(X;, Xqe: x, ()< m)) +€C (3.19)

n—o00

so we can conclude that (3.16) holds. [

S
) and

converge to 0 as k — oo. From now on, it will be more conve-

We will use Lemma 3.2 to prove that for any fixed j, [E()Fj,j+k(ei9,ca)

; ()Fj,j+k(€i9, €]
nient to work with the resolvent G instead of the Carathéodory function F'.

s
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Lemma 3.3. Let C = Cy, be the random CMV matrix associated to a family of Verblunsky
coefficients {0, }n >0 with o, i.i.d. random variables uniformly distributed in a disk D (0, r),
O0<r<l.Lets €(0,1),z € DUOID, and j a positive integer. Then we have

Jim E(|Gj.jsx(z. C)[)) = 0. (3.20)

Proof. For any fixed z € D, the rows and columns of G(z,C) are 12 at infinity, hence
converge to 0. Let s € (s, 1). Then we get (3.20) applying Lemma 3.2 to the random

variables X = |Gj,j+k(z, C)|S/ and using the power 5 < 1.

We will now prove (3.20) for z = e’ 0 € 0D. In order to do this, we will have to apply
the heavy machinery of transfer matrices and Lyapunov exponents developed in [30]. Thus,
the transfer matrices corresponding to the CMV matrix are

Th(2) = Ao, 2) - - - A0, 2), (3.21)

where A(a, z) = (1 — |o|?)~ /2 (_Z“Z _1a> and the Lyapunov exponent is

. 1
7(2) = lim —log |7, (z, {an})l] (3.22)
n—oo n
(provided this limit exists).

Observe that the common distribution d u1,, of the Verblunsky coefficients «;, is rotationally
invariant and

/ —log(l — w)du,(w) < oo, (3.23)
D(0,1)
and

/ —log |w|dpy,(w) < oo. (3.24)
D(0,1)

Let us denote by dvy the density of eigenvalues measure and let U?*V be the logarithmic
potential of the measure dvy, defined by

U‘”N(ef@)z/ lo — dvy(e'). (3.25)
oD

g |ei 0 _ el
By rotation invariance, we have dvy = ‘21—2 and therefore U?"V is identically zero. Using

results from [30], the Lyapunov exponent exists for every z = ¢!’ € 0D and the Thouless
formula gives

2@ =1 /D 051 = o)y (o). (3.26)
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2,42 )
By an immediate computation we get y(z) = % > 0.

The positivity of the Lyapunov exponent y(eie) implies (using the Ruelle-Osceledec
theorem; see [30]) that there exists a constant 4 % 1 (defining a boundary condition) for
which

lim_ T, (' (1) =0. (3.27)

From here we immediately get (using the theory of subordinate solutions developed in
[30]) that for any j and almost every el e oD,

lim G; (e’ C)=0. (3.28)
k—o00

We can use now (3.15) and (3.28) to verify the hypothesis of Lemma 3.2 for the random
variables

. s/
X = ‘Gj,j+k(€lg»c)) , (3.29)
where s” € (s, 1). We therefore get

tim (|G (%)) ) =0. O (3.30)

k— 00

The next step is to get the same result for the finite volume case (i.e., when we replace
the matrix C = C,, by the matrix C;”)).

Lemma 3.4. For any fixed j, any s € (0, %), and any z € D U 0D,

lim (’G,-,Hk (z, c;’”) S) —0. (3.31)

k—o00,k<n

Proof. Let C be the CMV matrix corresponding to a family of Verblunsky coefficients
{0n}n >0, with |a,| < r for any n. Since E (|G, j 1 (z, C)}‘Y) — Oand E <|Gj,j+k(Z, C)‘Z‘Y)
— 0 as k — oo, we can take k; >0 such that for any k >k,, E (|Gj,j+k(z, C)\S) <e¢ and
[E(}Gj,j+k(Z,C)|2s) <e.

Forn > (ks +2), let C™ be the CMV matrix obtained with the same o, o1, . . ., ty—2, 0,

... and with o,_; € dD. From now on we will use G(z,C) = (C — z) "' and G(z, Co({")) =
(CO((") —2)~L. Then

€ - —C-a'=C-7' - -7 (3:32)
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Note that the matrix (C —C ()Y has at most eight nonzero terms, each of absolute value at
most 2. These nonzero terms are situated at positions (m, m’) and |m —n| <2, |m’ —n| < 2.
Then

(I(c<n> - z)_]+k| ) (|(c - Z)Z}Jrkl“)
+20 3 E(IC- 27l I =yl ). (333
8 terms
Using Schwarz’s inequality,

E(IC =2 1€ =2 l7)

<[E(|C—z);:n|2‘v)l (|c<")— Ol )1/2. (3.34)

We clearly have m > k. and therefore E <|C — z)fl |2‘Y) < e. Also, from Lemma 3.1, there

exists a constant C depending only on s such that E <|C(") — ) <C.

m', j+k
Therefore, for any k > k., [E(I(C(n) —z)_ ) <e +el/2C.

Since ¢ is arbitrary, we obtain (3.31). D

N
]+k|

Note that Lemma 3.4 holds for any s € (0, %). The result can be improved using a
standard method:

Lemma 3.5. For any fixed j, any s € (0, 1), and any z € D,

lim [ (‘G.,',Hk (z, C;”))‘S) —0. (3.35)

k—00,k<n

Proof. Lets € [%, ,te(s, 1),r (0, %). Then using the Holder inequality for p = =~

t—s
and for ¢ = =L, we get

E(1C =97l
n n Ls=r)
=E(1C” = 74157 IC = 27,15

< (E(1C” =07l ))* (E(1e” -3, Hk|))%. (3.36)

From Lemma 3.1, [E(|(C(”) — z)_ i +k| ) is bounded by a constant depending only on ¢

and from Lemma 3.4, [E(I(C(") — z)f Wi Jrk| ) tends to 0 as k — oo. We immediately
get (3.35). U

We can improve the previous lemma to get that the convergence to 0 of [E(|(Co((") -
z);}.+k|x) is uniform in row j.
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Lemma 3.6. Foranye > 0, there exists a k, >0 such that, forany s, k, j,n,s € (0, 1),k >
ke,n > 0,0<j<(n— 1), and for any z € D U dD, we have

E (‘G,-,M (z, C;”))‘S) <. (3.37)

Proof. Asin the previous lemma, it is enough to prove the result for all z € D. Suppose the
matrix C™ is obtained from the Verblunsky coefficients o, o1, ..., o,—1. Let us consider
the matrix C 5’2 obtained from the same Verblunsky coefficients with the additional restriction
oy = €' where m is chosen to be bigger but close to j (for example m = j + 3). We will

now compare (C™ — z)7! . and (C ) _ 2); ; 4 By the resolvent identity,

Jijt+ dec
e - Z);;“‘ - ‘(C(n) - Z);}+k — (Clee - Z);;Hc‘ (3.38)
<2 2 ‘(C(n) - Z);zl‘ )(C((il::(): 0yl (339

[[=m| <2,|l'=m| <2

The matrix (Céﬁi —z)~! decouples between m — 1 and m. Also, since |’ —m| <2, we get
that for any fixed ¢ > 0, we can pick a k. such that for any k >k, and any /', [I' — m| <2,
we have

E (‘(Céﬁi . z),‘,}HkD <e. (3.40)

(In other words, the decay is uniform on the Srowsm —2,m — 1,m,m 4+ 1, and m + 2
situated at distance at most 2 from the place where the matrix C (gzg decouples.)

As in Lemma 3.4, we can now use Schwarz’s inequality to get that for any ¢ > 0 and for
any s € (0, %) there exists a k. such that for any j and any k > k.,

) 1
E <‘(C - z)j’j+k’ ) <e. (3.41)
Using the same method as in Lemma 3.5, we get (3.37) forany s € (0,1). O

We are heading towards proving the exponential decay of the fractional moments of the
matrix elements of the resolvent of the CMV matrix. We will first prove a lemma about the
behavior of the entries in the resolvent of the CMV matrix.

Lemma 3.7. Suppose the random CMV matrix C™ = CO(C") is given as before (i.e., g, o1,
wevy Op—2, O0y—1 are independent random variables, the first (n — 1) uniformly distributed
inside a disk of radius r and the last one uniformly distributed on the unit circle). Then, for
any point ¢ e oD and for any o. € Q where G, CD((")) = (CO(C") — ")~ exists, we have

‘sz G )‘ 5\ il
< ( ) (3.42)

Gaten.cn)| =7
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Proof. Using the results from Chapter 4 in Simon [29], the matrix elements of the resolvent
of the CMV matrix are given by the following formulae:

a1 @@k, k>1 or k=I1=2n-1,
-2 ]kl_{(ZZ)lm(z)xk(Z), I>k or k=1I=2n, (3.43)

where the polynomials y,(z) are obtained by the Gram—Schmidt process applied to {1, z,
z7!, ...} in L?(0D, dp) and the polynomials xx(z) are obtained by the Gram—Schmidt
process applied to {1, z71 z...}in L*(dD, dp). Also, p, and 7, are the analogs of the
Weyl solutions of Golinskii—Nevai [18] and are defined by

DPn = Yn + F(2)xp, (3.44)
= X+ F(@) ), (3.45)

where y, and Y, are the second kind analogs of the CMV bases and are given by

I
— < lrbzla n = 2l,
"= { —z7hh_, n=20—1, (3.46)

—1,,%
_ 2y, n=2I,
Yn_{Z"“lﬁzz_l, n=2-1, (3.47)

The functions y,, are the second kind polynomials associated to the measure p and F(z)
is the Carathéodory function corresponding to u (see [29]).

We will be interested in the values of the resolvent on the unit circle (we know they exist
a.e. for the random matrices considered here). For any z € 0D, the values of F(z) are purely
imaginary and also y,, (z) = x,(z) and Y,,(z) = —y,(z). In particular, |y, (z)| = |x,(z)| for
any z € 0D. o

Therefore 7, (z) = Y, (z) + F(2)y,(z) = —pn(2), s0 |7, (z)| = | pn(2)]| for any z € 0D.
We will also use |15, 11(2)] = |92, 11 1120 (@] = 10%,@1. 120 = |9, (2)]. and
|X2n—1(2)| = |@3,_,(2)| for any z € dD. Also, from Section 1.5 in [29], we have

‘—q’”ﬂ @ ¢ (3.48)

0, (2)

for any z € D, where C = 2/+/1 — r2.
The key fact for proving (3.48) is that the orthonormal polynomials ¢, satisfy arecurrence
relation

Ppi1(2) = py ' (20, () — T} (2)). (3.49)

This immediately gives the corresponding recurrence relation for the second kind poly-
nomials

Vi1 () = p, (@, (2) + T (2)). (3.50)
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Using (3.49) and (3.50), we will now prove a similar recurrence relation for the polyno-
mials 7,,. For any z € ¢D, we have

T141(2) = Yor41(2) + F(2) 12141 (2)
= Z_l(lﬁzlﬂ(z) + F(2)¢y41(2)
=—p5' 270 (@) + py' o M (2) (3.5
and similarly we get

m(z) = —pgll_lﬂzlq(Z) - Otzlflpzfll_lﬂzzq(z), (3.52)
where we used the fact that for any z € D, F(z) is purely imaginary, hence F (z) = —F (z).
Since pn_l <——, Egs. (3.51) and (3.52) will give that for any integer n and any z € D,
A 1-r2
Tp+1(2) <C. (3.53)
7, (2)

where C = 2/+/1 — r2.

Using these observations and (3.43) we get, for any z € 0D,

cm _ —1] <C [ cm _ —1] 3.54
‘[( 2 k.l ( 2) k1 >4
and also
e -7 T<cllem-o7"] | 3.55
e =7, e -7 (3.55)
We can now combine (3.54) and (3.55) to get (3.42). O
We will now prove a simple lemma which will be useful in computations.
Lemma 3.8. Forany s € (0, 1) and any constant f € C, we have
| I
———dx < / - dx. (3.56)
/;1 lx — BI° —1 |xP
Proof. Let f = f, +if, with f§;, f, € R. Then
/l ! d /1 ! dx < /1 ! d (3.57)
x = x< ——dx. .
1 lx =B S = B2+ B312 1 lx =Bl
But 1/|x|* is the symmetric decreasing rearrangement of 1/|x — f;|* so we get
L |
———dx < / —dx (3.58)
f4 lx = By I¥ -1 Ixl®

and therefore we immediately obtain (3.56). U

The following lemma shows that we can control conditional expectations of the diagonal
elements of the matrix C™.
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Lemma 3.9. Foranys € (0, 1),anyk, 1 <k <n, and any choice of oy, 1, ..., Og—1, Ck+1,
L] O‘n—Zs O‘n—l’
N
E(|Fu )| [ flize) < (3.59)

where a possible value for the constant is C = ]4 S 32%

Proof. For a fixed family of Verblunsky coefficients {c,},en, the diagonal elements of the
resolvent of the CMV matrix C can be obtained using the formula

e 42 0 0
Iqok(e‘ ) duce'), (3.60)

Ok (C+2)C—2)" o) = /
oD €

where p is the measure on 0D associated with the Verblunsky coefficients {o,},en and
{¢,}nen are the corresponding normalized orthogonal polynomials. _ _
Using the results of Khrushchev [24], the Schur function of the measure | ¢, (¢’ 9) 12 du(e 6)
is
gk(Z) = f(Zs Ok s Q415 - - ) f(Z9 _&k—lv _ak—27 RN _&09 1)s (361)
where by f(z; S) we denote the Schur function associated to the family of Verblunsky

coefficients S.
Since the dependence of f(z; ok, %1, ...) on oy is given by

ok + 2f (25 opt1, 042 - - .)
f(@ o, o1, o) = = , (3.62)
* I +ozf (25 kg1, Ok2 - - 2)

we get that the dependence of gx(z) on oy is given by

o +Co
=Ci———. 3.63
8k (2) T30 (3.63)
where
Cl = f(Z9 _&k—lv _ak—Za cees _a()v 1)s (364)
Co = 2f(T5 Okt1s Ok42, - - -)- (3.65)

Note that the numbers C; and C, do not depend on oy, |Cq, |C2| <1
We now evaluate the Carathéodory function F(z; |y (e’9)|2 d ,u(e’g)) associated to the
measure |y, (e’e)l2 d,u(e’e). By definition,

. . l@_‘r_
F(z; (@) du(e’?)) = /a o < |<pk<e"’)|2du(e"’) (3.66)
=(6k,<0+z><0—z> 16). (3.67)
We now have
F : i0 2d i0 :'1+ng(Z) 2 368
@ o) P due| = [T < ¢ Fe (3.68)
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It suffices to prove

s
2
wl,ssfemfa(o,r) 1—w B doy < oo. (3.69)
Clearly
2 2(1 + Swy)
1—w ﬁ%’ﬁi B ‘ 1+ 2wy — wi (o + w2)

4
I+ ogewr — wi (o + wa)

) (3.70)

< ‘

Forog = x+iy, 1+awr —wy (o +w2) = x(—wi+w2)+y(—iw; —iwa)+ (1 —wiws).
Since for wy, wy € D, (—w; + wy), (—iw; — iwy), and (1 — wjwy) cannot be all small,
we will be able to prove (3.69).

If| —w; +wy|>e,

/ 2
D(0,r)

_ Ol +wr
1 wi 1+ wo

’ A 1
dog < (= —  _dxd 3.71
¢ (e) 7r/,r|x+yD+E|S oo eI
| 4 (4

<2 (‘—L)S/ -dx = (—)S (3.72)
& _1 |xI® 1—s5\¢

(where for the last inequality we used Lemma 3.8).
The same bound can be obtained for |w; + wy| >¢.
If | — w4+ wy|<¢e and |w; + wa| <&, then

Ix(—wi + wa) + y(—iwy —iwz) + (1 — wyw)| > (1 — & — 4¢) (3.73)
SO
N
2 1 s
doy <2512 (—) ) (3.74)
/D(o,r) | —wy fi3E2 1—e?—de

Therefore for any small ¢, we get (3.59) with

4[4\ . 1 s
C = max ) I Al (P — i (3.75)
1—s \¢ 1 —e2—4¢

For example, for & = %, we get C = % 32, 0O

We will now be able to prove Theorem 2.1.

Proof of Theorem 2.1. We will use the method developed by Aizenman et al. [3] for
Schrodinger operators. The basic idea is to use the uniform decay of the expectations of the
fractional moments of the matrix elements of C® (Lemma 3.6) to derive the exponential
decay.

We consider the matrix C™ obtained for the Verblunsky coefficients o, o1, ..., 0—1.

Fixak, withO<k<(n—1).LetC 1(") be the matrix obtained for the Verblunsky coefficients
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o0, %1, - - ., 0y—1 With the additional condition ¢4, = 1 and Cé") the matrix obtained from

o0, %1, - -« 5 0y—1 With the additional restriction o y,,4+3 = el? (m is an integer >3 which
will be specified later, and ¢! is a random point uniformly distributed on 0D).
Using the resolvent identity, we have

e e (e B (¢ L R (G A A N (G R € N[O\
and
R (¢ S Il (Ao W (o2 S DX (6 S R € )
Combining (3.76) and (3.77), we get
I e (e S S (e L e (T LD N (s G

+ (Cin) . Z)—l (C;n) _ C(n)) (C(n) _ Z)_l
% (Cén) _ C(n)) (Cé") _ z)fl, (3.78)

For any k, [ with [ > (k + m), we have

[(CY” - z)*‘] =0 (3.79)

K
and

(e =7 —e @ -] =o. o

Therefore, since each of the matrices (Cg") — C™) and (Cé”) — C) has at most eight
nonzero entries, we get that

[€”-7], = 3 @ ot @~

64 terms

X (C(n) - Z)il (Cén) - C(n))3354 (Cén) - Z)_l (381)

5253 sal

which gives

£ (e -oz'])
<4 Z E (}(C{”) - Z)k_sll €™ -2, (Cé”) _

s4l

s
) , (3.82)
64 terms
where since the matrix C f") decouples at (k +m), we have |sy — (k +m)| <2 and, since the
matrix C'l(") decouples at (k + m + 3), we have |s3 — (kK +m + 3)|<2.
By Lemma 3.7, we have for any ¢/ € oD,

‘(C(n) — it~

5253

2 7
f (m_—z) ‘ -89

0 —1
‘(C(n) =) 1 kmt 1
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Observe that (C 1(") — Z),;l1 and (Cén) — z);} do not depend on o4+ 1, and therefore using
Lemma 3.9, we get

sal

E(|e” - o € -5k @ - o)

5253
4

= (m)

| {ai}i¢(k+m+l))

<

X

‘(C(") — 2 (3.84)

‘(C(’” 7!

s4l

Since the random variables (Cf") — z),:sll and (Cé") — z);d1 are independent (they depend
on different sets of Verblunsky coefficients), we get
e -a3)

DE(er -

E(|cf” - a5 € - 23}

5253 sal

<C(s,r)[E(

(G

) , (3.85)

7
where C(s, r) = 1= 32° (—) .
1—r2

The idea for obtaining exponential decay is to use the terms [E(l(Cl(") - z)I;I1 [¥) to get

smallness and the terms [E(|(C(") — 1)3_4} |*) to repeat the process. Thus, using the Lemma

3.6, we get that for any f < 1, there exists a fixed constant m >0 such that, for any sy,
|s1 — (k +m)| <2, we have

#-64-Cio.r) - E ([ =z

) <5 (3.86)

We can now repeat the same procedure for each term [E(|(C1(") — z);} |*) and we gain one
more coefficient . At each step, we move (m + 3) spots to the right from k to /. We can

repeat this procedure [ [=k ] times and we get

N
E (‘ ™ — 2! ‘ ) < CpU—h/m+3) (3.87)

which immediately gives (2.6). O

4. The localized structure of the eigenfunctions

In this section, we will study the eigenfunctions of the random CMV matrices considered
in (2.1). We will prove that, with probability 1, each eigenfunction of these matrices will
be exponentially localized about a certain point, called the center of localization. We will
follow ideas from del Rio et al. [8].

Theorem 2.1 will give that, for any z € 0D, any integer n and any s € (0, 1),

[E(‘Fkl(z,c;”))r) <Ce DI, 4.1
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Aizenman’s theorem for CMV matrices (see [31]) shows that (4.1) implies that for some
positive constants Co and Dg depending on s, we have

E (j‘fz’ ](5k, (C§"))f51)\) < Coe Dokl 4.2)

This will allow us to conclude that the eigenfunctions of the CMV matrix are exponentially
localized. The first step will be

Lemma 4.1. For almost every o € Q, there exists a constant Dy > 0 such that for any n,
any k, 1, with 1 <k, <n, we have

sup (0, (CI) 61)| < Dy (1 4 n)® e~ Dolk=11, 4.3)
A

Proof. From (4.2) we get that

f sup ](5k, €y 51)\ dP(0) < Cp e~ Dokl 4.4)
Q \jez
and therefore there exists a constant C; > 0 such that
o0
> 1
2 2 2
kT ki <n (I+nm)=(A+k)=1+1)
x (sup ‘(5k, (c;"))fa,)D DIl gp ey < €. (4.5)
jez

It is clear that for any k, [, with 1 <k, [ <n, the function

1 . -
T (72‘2 [CHCRL) ’) e (4.6)

is integrable.
Hence, for almost every o € , there exists a constant D, > 0 such that for any n, k, [,
with 1 <k, [<n,

sup‘(ék,(cg"))f'él)‘ < Dy(1+mbe Dokl 4.7)
JjeZ

A useful version of the previous lemma is

Lemma 4.2. For almost every o. € Q, there exists a constant C,, > 0 such that for any n,
any k, [, with 1 <k, I<n,and |k — | > [l)—i In(n + 1), we have

. D,
sup (5. (CY)1 8| < Cye™ 2 11, (4.8)
JjezZ
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Proof. It is clear that for any n, k, [, with 1 <k,/<n and |k —[| > Ll)—% In(n + 1),

! Bk
(I +n2) (1 + k(1 +12)

>1. (4.9)

In particular, for any n, k, [ with |k — | > l])_%) In(n + 1), the function

Q>0 — [sup
jez

(5k, (Cé”))féz) ‘) Pkl (4.10)

is integrable, so it is finite for almost every o.
Hence for almost every o € €, there exists a constant C, > 0 such that for any &, [,
k= 11> 52 In(n + 1),

sup‘(ak,(cé”))fél)‘ < Cpe PO “.11)
jez

Proof of Theorem 2.2. Let us start with a CMV matrix C" = Co(c") corresponding to the

Verblunsky coefficients o, o, . . ., ty—2, ¢y—1. As mentioned before, the spectrum of C ™) is

simple. Let ¢'% be an eigenvalue of the matrix Cy, ) and (p(") a corresponding eigenfunction.
We see that, on the unit circle, the sequence of functions

1 M

Y =0 4.12)
M A1 =,

fu? =

is uniformly bounded (by 1) and converge pointwise (as M — 00) to the characteristic
function of the point eV Let P{ei(i;‘} = X{eiem}(C;"))
By Lemma 4.2, we have, for any &, [, with |k — | > += 12 ln(n + 1),

(3 €)= 3375 %M (o e 0™ o) (*.13)

\..

M

Z ‘(5k,(c;"))f 5,)‘ < Cpe~ PW1 414y

2M+

where for the last inequality we used (4.1).
By taking M — oo in the previous inequality, we get

D,
(0. Prany 31)| < Caem 2! (4.15)

and therefore

oy (k) w(")(l)( < Cye~ P, (4.16)
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We can now pick as the center of localization the smallest integer m(qo&")) such that

105" (m(93™))| = max | @5 (m)]. (4.17)

(n) (n) 1
We clearly have |@, " (m (¢, ")) = Nk
Using the inequality (4.16) with k = m and | = m(@&")) we get, for any m with

m — m(py")| > £ In(n + 1),
) ~ D m—me™N T
@y (m)| < Cpe 2 n—+1. (4.18)

D, D
Since for large n, e_To‘k_” vn 4+ 1<e_T0‘k_” for any k, [, |k — 1| > 11)_?) In(n + 1), we

get the desired conclusion (we can take D, = Ll)—i). O

For any eigenfunction q)&"), the point m(q)&")) is called its center of localization. The

eigenfunction is concentrated (has its large values) near the point m(¢§”)) and is tiny at

sites that are far from m(q)&”)). This structure of the eigenfunctions will allow us to prove
a decoupling property of the CMV matrix.

Note that we used Lemma 4.2 in the proof of Theorem 2.2. We can get a stronger result
by using Lemma 4.1 (we replace (4.11) by (4.7)). Thus, for any n and any m <n, we have

Dy

(n
[0 (m)| < Dy (1 4 m) =T @D g T, (4.19)

where m((p&") ) is the center of localization of the eigenfunction (pf(x") .

5. Decoupling the point process

We will now show that the distribution of the eigenvalues of the CMV matrix C can be
approximated (as n — 00) by the distribution of the eigenvalues of another matrix CMV
matrix C ™) which decouples into the direct sum of smaller matrices.

As explained in Section 1, for the CMV matrix C™ obtained with the Verblunsky co-
efficients o« = (0, o1, ..., %,—1) € Q, we consider C™ the CMV matrix obtained from
the same Verblunsky coefficients with the additional restrictions Ay = e, Gy[n] =

Inn Inn
e .. a1 = e'lmnl where el ¢, ... ¢!nnl are independent random points uni-
formly distributed on the unit circle. The matrix C® decouples into the direct sum of
approximately [Inn] unitary matrices CY’) C ("), C~[(11:1)n . Since we are interested in the
asymptotic distribution of the eigenvalues, it will be enough to study the distribution (as
n — 00) of the eigenvalues of the matrices C™) of size N = [Inn] [Z-]. Note that in

this situation the corresponding truncated matrix CM) will decouple into the direct sum of

exactly [In n] identical blocks of size [ﬁ]

We will begin by comparing the matrices C™) and cM,
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Lemma 5.1. For N = [Inn] [{£-], the matrix CV) — CN) has at most 4[In n] nonzero
rows.

Proof. In our analysis, we will start counting the rows of the CMV matrix with row 0. A
simple inspection of the CMV matrix shows that for even Verblunsky coefficients oy, only
the rows 2k and 2k + 1 depend on oy For odd Verblunsky coefficients ooy 1, only the rows
2k, 2k + 1,2k + 2, 2k 4+ 3 depend on 0of 1.

Since in order to obtain the matrix C") from C"Y) we modify [Inn] Verblunsky coeffi-

cients A O[]y e ey K pg[ 2 ]> WE immediately see that at most 4[In n] rows of c™

are modified. 3
Therefore CY) — C) has at most 4[In n] NONZEero 1ows (and, by the same argument, at
most 4 columns around each point where the matrix C/V) decouples). [

Since we are interested in the points situated near the places where the matrix cM
decouples, a useful notation will be

Sy(K) = SVE)YUSPD(EK)YU...ushnD gy, (5.1)

where S®)(K) is a set of K integers centered at k [L] (e.g., for K = 2p, SE(K) =

Inn

(k[ ]-p+ Lk[Z]—-p+2....k[{£] + p}). Using this notation, we also have

Tnn Inn Tnn

Sy(l) = {[ﬁ] 2[%] ... [nn] [%]} (5.2)

Consider the intervals Iy x, 1 <k <m, of size % near the point ¢ on the unit circle (for

. a . b
example Iy = (@ OF W) 6 OFN)Y) where a) < by <ar < by < - <am < by. We will

denote by Ny (1) the number of eigenvalues of CM situated in the interval /, and by Ny (D)
the number of eigenvalues of C (V) situated in 1. We will prove that, for large N, Ny (In k)

can be approximated by N, ~ (IN k), that is, for any integers ki, k2, . . ., k =0, we have, for
N — o0,
| PWNUN1) = ki, NwUnp) =kao .. . NvUNm) = ki)
—PWnn,1) =ki, Ny(np) =ka, ..., NyUnm) = kn)| — 0. (5.3)

Since, by the results in Section 4, the eigenfunctions of the matrix C'"Y) are exponentially
localized (supported on a set of size 2T [In(n + 1)], where, from now on, T = é—‘(‘)), some of

them will have the center of localization near Sy (1) (the set of points where the matrix ¢
decouples) and others will have centers of localization away from this set (i.e., because of
exponential localization, inside an interval (k [ﬁ] ,(k+1) [ﬁ]))

Roughly speaking, each eigenfunction of the second type will produce an “almost” eigen-
function for one of the blocks of the decoupled matrix C™™). These ei genfunctions will allow
us to compare Ny (I x) and Ny (Iy x).

We see that any eigenfunction with the center of localization outside the set Sy (4T [In n])
will be tiny on the set Sy (1). Therefore, if we want to estimate the number of eigenfunctions

that are supported close to Sy (1), it will be enough to analyze the number by ,, where by 4
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= number of eigenfunctions of CéN) with the center of localization inside Sy (47 [In n]) (we
will call these eigenfunctions “bad eigenfunctions"). We will now prove that the number
b 4 1s small compared to N.

A technical complication is generated by the fact that in the exponential localization of
eigenfunctions given by (4.3), the constant D, depends on o € Q. We define

Mg ={aeQ, sup |k, (CN) 6)|<K (14 N)b e Polk=lI L (5.4)
jezZ

Note that for any K > 0, the set Mg C Q is invariant under rotation. Also, we can
immediately see that the sets Mg grow with K and

Jim P(Mg) =1 (5.5)

We will be able to control the number of “bad eigenfunctions" for o € M using the
following lemma:

Lemma 5.2. For any K > 0 and any o € M, there exists a constant Cg > 0 such that
by, <Ck (In(1 + N))*. (5.6)

Proof. For any K > 0, any & € Mg, and any eigenfunction ¢} which is exponentially
localized about a point m(q)év ), we have, using (4.19),

D, (N)
(P;N)(m)‘ < K e~ 2 Im=m(@;")] 1+ N)°V1+N. (5.7

Therefore for any m such that |m — m((p9’)| > [11)—‘(‘) In(1 + N)], we have

2

m—m(o)1> [ $ mn(1+M)]

2 o0
’ <21+ M)A+ NP Y Kok
k=0

oV (m)

2¢P0

< (1+N)"'k? .
(1+N) Do 1

(5.8)

Therefore, for any fixed K and s, we can find an Ny = Ny(k, s) such that for any N > Ny,

2

m—m(e})| <[ $ n(1+M)]

o) <m))2 >1 (59

We will consider eigenfunctions (paN with the center of localization in Sy (47 [In N]).
For a fixed o € M, we denote the number of these eigenfunctions by by 4. We denote by
{1, %2, ..., ¥y, } the set of these eigenfunctions. Since the spectrum of C™™ is simple,
this is an orthonormal set.
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Therefore, if we denote by card(A) the number of elements of the set A, we get
bN o

> D i

meS(4T[lnN]+[['T‘(‘)1n(l+N)]) i=1
14
< card {S <4T[ln N]+ [F In(1 + N)D}
0
14 5
< (4T + ) (n(1 + N))*.
Do

Also, from (5.9), for any N > Ny(K, s),

bN,ot
> > Wim)P = by (5.10)

meS<4T[ln N]+[[1);(‘] 1n(1+N)D i=1

Therefore, for any K > 0 and any o € Mg, we have, for N > No(K, s),
14 )
by <2 4T+D— (In(1 + N)) (5.11)
0
and we can now conclude (5.6). [

Lemma 5.2 shows that for any K >0, the number of “bad eigenfunctions” corresponding
to o € Mk is of the order (In N)? (hence small compared to N).

Since the distributions for our Verblunsky coefficients are taken to be rotationally invari-
ant, the distribution of the eigenvalues is rotationally invariant. Therefore, for any interval
Iy of size % on the unit circle, and for any fixed set Mg C Q, the expected number of

2
“bad eigenfunctions” corresponding to eigenvalues in /Iy is of size (lnlflv )~ We then get that

the probability of the event “there are bad eigenfunctions corresponding to eigenvalues in
the interval I converges to 0. This fact will allow us to prove

Lemma 5.3. For any K > 0, any disjoint intervals In 1, Iy 2, ..., IN m (each one of size
% and situated near the point e'*) and any positive integers ki, ko, ..., ky,, we have

| PGNNUN.1D) =ki, NvUn2) = koo oo . NNUnm) =k} N M)
—P((NnUn) =ki. NnUn2) = koo ... Ny Uy m) = kin}
NMg)|— 0 (5.12)
as N — oo.
Proof. We will work with « € Mg. We first observe that any “good eigenfunction”

(i.e., an eigenfunction with the center of localization outside Sy (47 [In N])) is tiny
on Sy (1).
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Indeed, from (4.19), for any eigenfunction gong) with the center of localization m((pfo))
and for any m with [m — m((p&N))| > lD—%[ln(N + 1)],
D, (N)
19" )| < Ke™ 2 Mm@l (1 4 NYSVT N, (5.13)

In particular, if the center of localization of (p&N) is outside Sy (4T[In N1]), then for all

m € Sy(1), we have

1o m)| <K (1 + N)~2, (5.14)
We will use the fact that if N is a normal matrix, zg € C, ¢ > 0, and ¢ is a unit vector
with

(N —=zo)pll <e (5.15)

then N has an eigenvalue in {z | |z — 20| < €}.

For any “good eigenfunction” q)éN), we have C;N)(p&N)

5.1,

= 0 and therefore, using Lemma

ICY 11 <2K [In N1(1 + N) 2. (5.16)
Therefore, for any interval Iy of size i, we have
Ny (Iy) <Ny (y), (5.17)

where iN is the interval Iy augmented by 2K [In N](1 + N)2.
Since 2K[In N](1 + N)~%2 = o(%), we can now conclude that

P(NyUN) SNyUIN) N Mg) =1 as n— oo, (5.18)

We can use the same argument (starting from the eigenfunctions of C~§(N) , which are also
exponentially localized) to show that

P(WNyUn)ZNy(IN) N Mg) — 1 as n— oo, (5.19)

so we can now conclude that

P(NyvUy) = NyUn) N Mg) — 1 as n— oo. (5.20)
Instead of one interval Iy, we can take m intervals Iy 1, In2,..., IN.m SO we get
(5.12). O

Proof of Theorem 2.3. Lemma 5.3 shows that for any K > 0, the distribution of the
eigenvalues of the matrix C'V) can be approximated by the distribution of the eigenvalues
of the matrix CY) when we restrict to the set Mg C Q. Since by (5.5) the sets Mg grow
with K and limg _, oo P(Mg) = 1, we get the desired result. [
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6. Estimating the probability of having two or more eigenvalues in an interval

The results from the previous section show that the local distribution of the eigenvalues
of the matrix C/Y)' can be approximated by the direct sum of the local distribution of [In 1]

matrices of size [ -], C](N) , CSN), o C[(IJX L]. These matrices are decoupled and depend on
independent sets of Verblunsky coefficients; hence they are independent.

For a fixed point ¢/% € 9D, and an interval Iy = (ei(g‘)*z% , ei(90+%)), we will now
want to control the probability of the event “C™") has k eigenvalues in Iy.” We will analyze
(N)
[Inn]*

We will prove that, as n — 00, each of the decoupled matrices C,iN) contributes (up to a
negligible error) at most one eigenvalue in the interval /.
For any nonnegative integer m, denote by A(m, C, I) the event

the distribution of the eigenvalues of the direct sum of the matrices CiN), CéN), ..., C

A(m,C, I) = “C has at least m eigenvalues in the interval I"” 6.1)
and by B(m, C, I) the event
B(m, C, I) = “C has exactly m eigenvalues in the interval I” (6.2)

In order to simplify future notations, for any point e’ ¥ ¢ oD, we also define the event
M (e’e) to be

M(eio) = “¢/¥is an eigenvalue of cN» (6.3)

We can begin by observing that the eigenvalues of the matrix CN) are the zeros of the
Nth paraorthogonal polynomial (see (1.2))

Oy (2. dp. f) = 2@y-1(z. dp) = POy _ (2. dp) (6.4)
Therefore we can consider the complex function

BN () = ﬁfb#‘(l@, (6.5)
N_1()
which has the property that ®y (¢!?) = 0 if and only if By (¢'?) = 1.
By writing the polynomials ®y_; and @}, _, as products of their zeros, we can see that
the function By is a Blaschke product.
Let i,y : [0, 21) — R be a continuous function such that

By (e = & (® (6.6)

(we will only be interested in the values of the function 5, near a fixed point ¢l ¢ D).
Note that for any fixed 0 € 0D, we have that #(0) is a random variable depending on
o= (00,01, ..., 0N-2,0N—1 = f) € Q.
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We will now study the properties of the random variable ny (0) = ny (0, 0, 01, ...,
oan—2, f5). Thus

Lemma 6.1. Forany 0y and 0,, the random variables Eg—g’ (01) and n y (02) are independent.
Also for any fixed value w € R,

9
E (%(91) ‘ iy (02) = w) — N. 6.7)

Proof. Eq. (6.5) gives

Ny (0) =y +(0), (6.8)
. . i0 i0
where ¢/7 = f and €7 = %. Since the distribution of each of the random
N-1
variables o, o1, . .., ay—2 and f is rotationally invariant, for any 6 € [0, 27), y and 7(0) are

random variables uniformly distributed. Also, itis immediate that y and 7(0) are independent.
Since y does not depend on 0, for any fixed 0y, 0, € [0, 27), we have that the random

variables 50:’—5’(01) and 77,y (02) are independent.

We see now that for any Blaschke factor B,(z) = f—;aaz’ we can define a real-valued

function 7, on dD such that

e Ma® — p ('), (6.9)
A straightforward computation gives

My L —lal?

— )= —— > 0. 6.10

50( ) 0 ap? (6.10)

Since By is a Blaschke product, we now get that for any fixed « € Q, F"—N has a constant
sign (positive). This implies that the function 7 is strictly increasing. The function By (z)
is analytic and has exactly N zeros in D and therefore we get, using the argument principle,
that

2n a”N
/ ——(0)dO = 2xnN. (6.11)

o 00
Note that Oy does not depend on f (it depends only on o, o, ..., ay—2). Also, using

00
the same argument as in Lemma 3.1, we have that for any angles 6 and o,

N gy = v

0) = 0— ), 6.12
20 (0) 20 O—9) (6.12)

where 77 is the function 7 that corresponds to the Verblunsky coefficients
ot =e Py k=0,1,..., (N —2). (6.13)
Since the distribution of og, oy, ..., oy—2 is rotationally invariant, we get from (6.12)

that the function 0 — E (ag—g’(Q)) is constant.
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Taking expectations and using Fubini’s theorem (as we also did in Lemma 3.1), we get,

for any angle 0,
5
) d0 = 2rE (%(00)) (6.14)

2n 2n )
27N =F ( / A gy d@) / E (‘"’N
0 0 00
<6'7N (0o )) (6.15)

and therefore
Since for any 01, 0, € [0, 27), we have that ¢ 7” (01) and 17,y (07) are independent, (6.15)
implies that for any fixed value w € R,

0
E < Ty
a0
We will now control the probability of having at least two eigenvalues in I conditioned

by the event that we already have an eigenvalue at one fixed point ¢’ 01 ¢ Iy. This will be
shown in the following lemma:

= w) = N. O (6.16)

Lemma 6.2. WithC™), Iy, and the events A(m, C, I) and M (¢’ 9) defined before, and for
any e Iy, we have

P(A (2,C<N>,1N) | M(e"gl)) < —a). (6.17)

Proof. Using the fact that the function 0 — [E ( (9)) is constant and the relation (6.16),
we get that

00+ a,,’N
E f (Hl)del‘r]N(@z)_w =21 (b —a). (6.18)
90+2% a0
We see that
Dy () =0 < By('’) =1 < 5y(0) =0 (mod 2m). (6.19)

Therefore if the event A2, C N) 1 ~) takes place (i.e., if the polynomial ®y vanishes at
least twice in the interval /), then the function 7, changes by at least 27 in the interval
Iy, and therefore we have that

00+M5
/ ' gg (0)do>2n, (6.20)

whenever the event A(2, c 1 ~) takes place.
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For any 6; € Iy we have, using the independence of the random variables 8(;7—3(91) and
1y (02) for the first inequality and Chebyshev’s inequality for the second inequality,

P (A(z, e, IN) ’ M(ei91)>

O+ 222
<P (/ o oy AN 9y d0>2n ‘ M(e’()'))
0

0+27m 06
1 90+ a
<— T / AN 0y a0 ‘ M) . 6.21)
27'[ 60_’_2% 6

The previous formula shows that we can control the probability of having more than two
eigenvalues in the interval I conditioned by the event that a fixed 01 is an eigenvalue.
We now obtain, using (6.18) with w = 2nm, m € Z,

P (A (2, e, IN) M (ei”l)) <b-a). 0O (6.22)
We can now control the probability of having two or more eigenvalues in /.

Theorem 6.3. With CY), Iy, and the event A(m, C, I) defined before, we have

P (A (2, e, IN>) < @. (6.23)

Proof. For any positive integer k, we have

1 [Oo+% .
P (B(k,c“"), IN)) = Efg P <B(k, ™ 1y | M(e’0)> Ndvy (@) (6.24)
o+ %+

(where the measure vy is the density of eigenvalues).

Note that the factor % appears because the selected point e
probability can be any one of the k points.

We will now use the fact that the distribution of the Verblunsky coefficients is rotationally
invariant and therefore for any N we have dvy = g—z, where g—g is the normalized Lebesgue
measure on the unit circle.

Since for any k >2 we have % < %, we get that for any integer k >2 and for large N,

i0 where we take the conditional

N [ltF 0.\ do
(B(k cm, IN)) (B(k,C(N), Iy) | M(el")) @ (6.25)
2 00+2% 27'[
and therefore,
90+ 2nb 0

P(42.c™, 1)) g%/o i N P (4@, c™, 1y) | M) e (6.26)
2
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Using Lemma 6.2, we get

(b—a) _(b—a)?

(b —a) 5 O 6.27)

P(A2, ™, Iy) <§

(N)
[Inn

Theorem 6.4. With CV), C§N>, C;N), ...,C
fore, we have, for any k, 1 <k <[Inn],

I In, and the event A(m, C, I) defined be-

P (A(z, ™, IN)> —0 (([m n])_2> as n— 0o (6.28)

Proof. We will use the previous theorems for the CMV matrix C,iN). Recall that N =
[Inn] [ ]. Since this matrix has [ -] eigenvalues, we can use the proof of Lemma 6.2 to

obtain that for any el N

: 1 2nb—a) [ n b—a
P(AQ, ¢, Iy) | M@E) < — 22 2| = . 6.29
( 2.6 Iv) [ M(e )) 21 N [lnn] (Inn] (6.29)
The proof of Theorem 6.3 now gives
(b—a)?
P(AQ,c™ Iy)) <—L 6.30
( 2. G N)> 2[Inn? (6.30)

and hence (6.28) follows. U

This theorem shows that as N — oo, any of the decoupled matrices contributes with at
most one eigenvalue in each interval of size %

7. Proof of the main theorem

We will now use the results of Sections 3-6 to conclude that the statistical distribution
of the zeros of the random paraorthogonal polynomials is Poisson.

Proof of Theorem 1.1. It is enough to study the statistical distribution of the zeros of
polynomials of degree N = [Inn] [ﬁ] These zeros are exactly the eigenvalues of the
CMV matrix CY, so, by the results in Section 5, the distribution of these zeros can be
approximated by the distribution of the direct sum of the eigenvalues of [Inn] matrices
e™ o™ e

[Inn]*

In Section 6 (Theorem 6.4), we showed that the probability that any of the matrices
C(N) c\v) cv)
1 %2 s Mg

uated near a fixed point ¢! € 0D isof order O ([In n]*z). Since the matrices C{N) , CéN) e

contributes with two or more eigenvalues in each interval of size % sit-

C[(llr\gl] are identically distributed and independent, we immediately get that the probability

that the direct sum of these matrices has two or more eigenvalues in an interval of size %

situated near e'? is [Inn] O([In n]*z) and therefore converges to 0 as n — 0.
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‘We can now conclude that as n — o0, the local distribution of the eigenvalues converges
to a Poisson process with intensity measure n d0 using a standard technique in probability

2n
. . 2na . 2nh . .
theory. We first fix an interval Iy = (e’(()OJr N el oty )) near the point P (as before,
we take N = [Inn][%]). Let us consider [Inn] random variables X1, X2, ..., X{inn]

where X =number of the eigenvalues of the matrix C,EN) situated in the interval Iy and let
Sn(In) = X1 + X2 + - -+ + X[nn). Note that S, (Iy) = the number of eigenvalues of the
matrix CN) situated in the interval 7. We want to prove that

() b—a)t .

T (7.1)

lim P(S,(Iy) = k) =
n— 00

Theorem 6.4 shows that we can assume without loss of generality that for any k, 1 <k <
[Inn], we have X; € {0, 1}. Also, because of rotation invariance, we can assume, for
large n,

(b—a)

PXy=1) = TR (7.2)
P =0 =1_ 2= (1.3)
[Inn]

The random variable S, () can now be viewed as the sum of [Inn] Bernoulli trials,
(b—a)

each with the probability of success ] and
k [Inn]—k
[Inn] (b—a) b—a)
P(S,(In) =k) = _— l—— 7.4
(SalIn) = k) ( B )( o] ] (7.4)
which converges to e‘ﬂ“%, where 4 = [Inn] (ﬁn_ :]) = (b — a). Therefore we get (7.1).

Since for any disjoint intervals Iy ¢, 1 <k <[Inn] situated near é 90, the random variables
Sn(In k) are independent, (7.1) will now give (1.6) and therefore the proof of the main
theorem is complete. [

8. Remarks

1. We should emphasize the fact that the distribution of our random Verblunsky coefficients
is rotationally invariant. This assumption is used in several places and seems vital for our
approach. It is not clear how (or whether) the approach presented here can be extended
to distributions that are not rotationally invariant.

2. In this paper, we study the statistical distribution of the zeros of paraorthogonal poly-
nomials. It would be interesting to understand the statistical distribution of the zeros
of orthogonal polynomials. A generic plot of the zeros of paraorthogonal polynomials
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versus the zeros of orthogonal polynomials is

‘x"" )Ql*”x
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&x o«
X s s %
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In this Mathematical plot, the points represent the zeros of paraorthogonal polynomials
obtained by randomly choosing o, %1, . . ., g9 from the uniform distribution on D (0, %)
and o7 from the uniform distribution on dD. The crosses represent the zeros of the
orthogonal polynomials obtained from the same o, o, ..., tgo and an o7 randomly
chosen from the uniform distribution on D (0, %).

We observe that, with the exception of a few points (corresponding probably to “bad
eigenfunctions”), the zeros of paraorthogonal polynomials and those of orthogonal poly-
nomials are very close. We conjecture that these zeros are pairwise exponentially close
with the exception of O ((In N )2) of them. We expect that the distribution of the argu-
ments of the zeros of orthogonal polynomials on the unit circle is also Poisson.

. We would also like to mention the related work of Bourget et al. [5] and Joye [21,22].
In these papers, the authors analyze the spectral properties of a class of five-diagonal
random unitary matrices similar to the CMV matrices (with the difference that it contains
an extra random parameter). In [22] (a preprint which appeared as this work was being
completed), the author considers a subclass of the class of Bourget et al. [5] that does
not overlap with the orthogonal polynomials on the unit circle and proves Aizenman—
Molchanov bounds similar to the ones we have in Section 3.

. The results presented in our paper were announced by Simon in [32], where he describes
the distribution of the zeros of orthogonal polynomials on the unit circle in two distinct
(and, in a certain way, opposite) situations. In the first case, of random Verblunsky
coefficients, our paper shows that there is no local correlation between the zeros (Poisson
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behavior). The second case consists of Verblunsky coefficients given by the formula
o, = Cb" + O((bA)") (i.e., o, /D" converges to a constant C sufficiently fast). In this
case it is shown in [32] that the zeros of the orthogonal polynomials are equally spaced
on the circle of radius b, which is equivalent to saying that the angular distance between
nearby zeros is 27/n (“clock” behavior).
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